Exam 1 Practice

February 27, 2015

Exercise 1

For any two events A and B,

$$
P(A \mid B)=P(A)
$$

(a) TRUE
(b) FALSE

Exercise 1

For any two events A and B,

$$
P(A \mid B)=P(A)
$$

(a) TRUE
(b) FALSE
$P(A \mid B)=P(A)$ only if A and B are independent. We saw many examples where $P(A \mid B) \neq P(A)$.

Exercise 2

For two independent events A and B,

$$
P(A \cap B)=P(A) P(B)
$$

(a) TRUE
(b) FALSE

Exercise 2

For two independent events A and B,

$$
P(A \cap B)=P(A) P(B)
$$

(a) TRUE
(b) FALSE

If A and B are independent, which by definition means $P(A \mid B)=P(A)$, then we have $P(A \cap B)=P(A) P(B)$.

This is how we verify if two events are independent: by checking if $P(A \cap B)=P(A) P(B)$!

Exercise 3

(1) Suppose a family has two children.
$A=$ event that the family has at least one boy and at least one girl.
$B=$ the event that the family has at most one girl.
Are A and B independent?
(2) Suppose a family has three children.

Are A and B (defined exactly as above) independent?

Exercise 3

(a) (1) independent, (2) not independent
(b) (1) not independent, (2) independent
(c) (1) and (2) both independent
(d) (1) and (2) both not independent
(e) I don't know

Exercise 3

(a) (1) independent, (2) not independent
(b) (1) not independent, (2) independent
(c) (1) and (2) both independent
(d) (1) and (2) both not independent
(e) I don't know

Exercise 3, part (1) Solution

The sample space is $\Omega=\{B B, G G, B G, G B\}$.
Event A (at least one boy and at least one girl) is

$$
A=\{B G, G B\}, \text { thus } P(A)=\frac{|A|}{|\Omega|}=\frac{2}{4}=\frac{1}{2}
$$

Event B (at most one girl) is

$$
B=\{B B, B G, G B\}, \text { thus } P(B)=\frac{|B|}{|\Omega|}=\frac{3}{4}
$$

Now

$$
A \cap B=A, \text { thus } P(A \cap B)=\frac{1}{2}
$$

So

$$
P(A \cap B) \neq P(A) P(B)
$$

So A and B are NOT independent.

Exercise 3, part (2) Solution

The sample space is
$\Omega=\{B B B, G G G, B G G, G G B, B B G, G B B, G B G, B G B\}$.
Event A (at least one boy and at least one girl) is
$A=\{B G G, G G B, B B G, G B B, G B G, B G B\}$, thus $P(A)=\frac{|A|}{|\Omega|}=\frac{6}{8}=\frac{3}{4}$.
Event B (at most one girl) is

$$
B=\{B B B, B B G, G B B, B G B\}, \text { thus } P(B)=\frac{|B|}{|\Omega|}=\frac{4}{8}=\frac{1}{2}
$$

So $P(A) P(B)=\frac{3}{8}$. Now

$$
A \cap B=\{B B G, G B B, B G B\} \text { thus } P(A \cap B)=\frac{3}{8}
$$

So

$$
P(A \cap B)=P(A) P(B)
$$

So A and B ARE independent.

Exercise 4

Compute the improper integral

$$
\int_{0}^{\infty} \frac{1}{x^{5}} d x
$$

Exercise 4

$$
\int_{0}^{\infty} \frac{1}{x^{5}} d x
$$

(a) $=\frac{1}{4}$
(b) $=-\frac{1}{4}$
(c) $=0$
(d) diverges
(e) I don't know.

Exercise 4

$$
\int_{0}^{\infty} \frac{1}{x^{5}} d x
$$

(a) $=\frac{1}{4}$
(b) $=-\frac{1}{4}$
(c) $=0$
(d) diverges
(e) I don't know.

Exercise 4 solution

The integral

$$
\int_{0}^{\infty} \frac{1}{x^{5}} d x
$$

is improper for 2 reasons: it has an infinite discontinuity at 0 and the upper limit of integration is unbounded. Thus, we need to split it up.

$$
\int_{0}^{\infty} \frac{1}{x^{5}} d x=\int_{0}^{1} \frac{1}{x^{5}} d x+\int_{1}^{\infty} \frac{1}{x^{5}} d x
$$

Looking at the first summand,

$$
\int_{0}^{1} \frac{1}{x^{5}} d x=\lim _{b \rightarrow 0^{+}} \int_{b}^{1} \frac{1}{x^{5}} d x=\lim _{b \rightarrow 0^{+}}\left(-\frac{1}{4}+\frac{1}{4 b^{4}}\right)=\infty
$$

Since the first summand diverges, the whole integral diverges. (Note that the second summand does converge but that doesn't help.)

Exercise 5

Write down the form of the partial fraction decomposition of the following rational function. Do not solve for the unknown variables, just stop there.

$$
\frac{x^{4}+3}{x\left(x^{2}+2\right)^{2}\left(6 x^{2}-x\right)}
$$

Exercise 5

I got terms in my decomposition
(a) 3
(b) 4
(c) 5
(d) 6
(e) 7

Exercise 5

I got terms in my decomposition
(a) 3
(b) 4
(c) 5
(d) 6
(e) 7

Exercise 5 Solution

First, we factor the denominator of

$$
\frac{x^{4}+3}{x\left(x^{2}+2\right)^{2}\left(6 x^{2}-x\right)}
$$

into linear terms and irreducible quadratics:

$$
x\left(x^{2}+2\right)^{2}\left(6 x^{2}-x\right)=x^{2}\left(x^{2}+2\right)^{2}(6 x-1)
$$

where now all the terms are irreducible. Thus the correct form of the partial fraction decomposition is

$$
\frac{A}{x}+\frac{B}{x^{2}}+\frac{C x+D}{x^{2}+2}+\frac{E x+F}{\left(x^{2}+2\right)^{2}}+\frac{G}{6 x-1}
$$

Exercise 6

Two cards are chosen at random from a pack of 52 playing cards. What is the probability that at least one of them is a Heart?

Exercise 6

Two cards are chosen at random from a pack of 52 playing cards.
What is the probability that at least one of them is a Heart?
(a) $\frac{22}{51}$
(b) $\frac{15}{34}$
(c) $\frac{19}{34}$
(d) $\frac{29}{51}$
(e) 1

Exercise 6

Two cards are chosen at random from a pack of 52 playing cards.
What is the probability that at least one of them is a Heart?
(a) $\frac{22}{51}$
(b) $\frac{15}{34}$
(c) $\frac{19}{34}$
(d) $\frac{29}{51}$
(e) 1

Exercise 6 Solution

In a pack, there are 13 Hearts and 39 non-Hearts.

Define

$A=$ event that at least one of them is a Heart
Therefore, $A^{c}=$ event that neither of them is a Heart.
Define
$B=$ event that first card is not a Heart. So $P(B)=\frac{39}{52}=\frac{3}{4}$.
$\mathrm{C}=$ event that second card is not a Heart. So $P(C \mid B)=\frac{38}{51}$

$$
\begin{aligned}
& \Longrightarrow P\left(A^{c}\right)=P(B \cap C)=\frac{3}{4} \times \frac{38}{51}=\frac{19}{34} \\
& \Longrightarrow P(A)=1-P\left(A^{c}\right)=1-\frac{19}{34}=\frac{15}{34}
\end{aligned}
$$

